Thursday, October 24, 2013

Isobutanol

Isobutanol is an organic compound with the formula (CH3)2CHCH2OH. This colorless, flammable liquid with a characteristic smell is mainly used as a solvent. Its isomers include n-butanol, 2-butanol, and tert-butanol, all of which are important industrially.
Isobutanol is produced by the carbonylation of propylene. Two methods are practiced industrially, hydroformylation is more common and generates a mixture of isobutyraldehydes, which are hydrogenated to the alcohols and then separated. Reppe carbonylation is also practiced.
And isobutanol could indeed function as a relatively effective substitute for gasoline — isobutanol releases just around 82% of the heat energy that gasoline does when burned, as compared to the 67% that ethanol does. And, perhaps more importantly, isobutanol doesn’t possess the same significant drawbacks that ethanol does — in particular, it doesn’t possess ethanol’s unfortunate tendency to absorb water, and thus doesn’t damage conventional engines and pipelines in the same way that pure ethanol does. So, while pure ethanol would only be a viable replacement for gasoline if all of the infrastructure in use today was completely replaced, isobutanol cold simply replace gasoline as is — no new infrastructure needed.
Isobutanol — a high-performance biofuel that closely matches the properties of gasoline — can be produced from waste plant materials through the combined actions of a common fungus and a common bacteria, according to new research from the University of Michigan. When paired up together, the fungus Trichoderma reesei, and the bacteria Escherichia coli, can effectively create the biofuel isobutanol from materials such as cornstalks and plant leaves.
While the production of a useful biofuel is impressive enough, the researchers think that the same principle used to produce the biofuel could be used to produce other useful chemicals, such as plastics.
Isobutanol is also produced naturally during the fermentation of carbohydrates and may also be a byproduct of the decay process of organic matter. The biosynthetic pathway used to produce isobutanol was first discovered in species of bacteria from the genus Clostridium. This pathway has been genetically engineered into several species of microorganisms which are more easily manipulated by current scientific methods than microorganisms of the genus Clostridium.
And isobutanol could indeed function as a relatively effective substitute for gasoline — isobutanol releases just around 82% of the heat energy that gasoline does when burned, as compared to the 67% that ethanol does. And, perhaps more importantly, isobutanol doesn’t possess the same significant drawbacks that ethanol does — in particular, it doesn’t possess ethanol’s unfortunate tendency to absorb water, and thus doesn’t damage conventional engines and pipelines in the same way that pure ethanol does. So, while pure ethanol would only be a viable replacement for gasoline if all of the infrastructure in use today was completely replaced, isobutanol cold simply replace gasoline as is — no new infrastructure needed.
Edit by http://www.hiseachem.com

No comments:

Post a Comment